Partitioning Tricks

For those of you who are using partitioning, or who are considering using partitioning, allow me to share some tips with you.

Easy Partition Staging Tables

Switching partitions (or more specifically, hobts) in and out of a partitioned table requires the use of a staging table. The staging table has very specific requirements: it must be completely identical to the partitioned table, including indexing structures, and it must have a check constraint that limits data to the partitioning range. Thanks to my co-worker Jeff, I’ve recently started using the SQL Server Partition Management tool on CodePlex. I haven’t used the automatic partition switching feature — frankly, using any sort of data modification tool in a production environment makes me nervous — but I’ve been using the scripting option to create staging tables in my development environment, which I then copy to production for use. It’s nothing you can’t do yourself, but it does make the whole process easy and painless, plus it saves you from annoying typos. But be careful when using this tool to just create the table and check constraints automatically, because you may need to…

Add Check Constraints After Loading Data

Most of the time, I add the check constraint when I create the staging table, then I load data and perform the partition switch. However, for some reason, I was receiving the following error:

.Net SqlClient Data Provider: Msg 4972, Level 16, State 1, Line 1
ALTER TABLE SWITCH statement failed. Check constraints or partition function of source table ‘myStagingTable’ allows values that are not allowed by check constraints or partition function on target table ‘myDestinationTable’.

This drove me crazy. I confirmed my check constraints were correct, that I had the correct partition number, and that all schema and indexes matched identically. After about 30 minutes of this, I decided to drop and recreate the constraint. For some reason, it fixed the issue. Repeat tests produced the same results: the check constraint needed to be added *after* data was loaded. This error is occurring on a SQL Server 2008 SP1 box; to be honest, I’m not sure what’s causing the error, so if you know, please leave me a comment. But I figured I’d share so that anyone else running into this issue can hopefully save some time and headache. :)

Replicating Into Partitioned and Non-Partitioned Tables

Recently, we needed to replicate a non-partitioned table to two different destinations. We wanted to use partitioning for Server A, which has 2008 Enterprise; Server B, which is on 2005 Standard, could not take advantage of partitioning. The solution was really easy: create a pre-snapshot and post-snapshot script for the publication, then modify to handle each server group differently. Using pseudo-code, it looked something like this:

/* Identify which servers get the partitioned version */
If @@ServerName In ('yourServerNameList') 
Begin
 
    /* Create your partitioning scheme if necessary */
    If Not Exists(Select * From sys.partition_schemes Where name = 'InsertPartitionScheme')
        CREATE PARTITION SCHEME InsertPartitionScheme 
            AS PARTITION InsertPartitionFunction ALL TO ([PRIMARY]);    
 
    /* Create your partitioning function if necessary */
    If Not Exists(Select * From sys.partition_functions Where name = 'InsertPartitionFunction')
        CREATE PARTITION FUNCTION InsertPartitionFunction (smalldatetime) 
            AS RANGE RIGHT FOR VALUES ('insertValues');    
 
    /* Create a partitioned version of your table */
    CREATE TABLE [dbo].[yourTableName] (
	    [yourTableSchema]
    ) ON InsertPartitionScheme([partitioningKey]);
 
End
Else
Begin
 
    /* Create a non-partitioned version of your table */
    CREATE TABLE [dbo].[yourTableName] (
	    [yourTableSchema]
    ) ON [Primary];
 
End

You could also use an edition check instead of a server name check, if you prefer. The post-snapshot script basically looked the same, except you create partitioned indexes instead.

Compress Old Partitions

Did you know you can set different compression levels for individual partitions? It’s true! I’ve just completed doing this on our largest partitioned table. Here’s how:

/* Apply compression to your partitioned table */
Alter Table dbo.yourTableName
Rebuild Partition = All
With 
(
      Data_Compression = Page On Partitions(1 to 9)
    , Data_Compression = Row  On Partitions(10 to 11) 
    , Data_Compression = None On Partitions(12)
);
 
/* Apply compression to your partitioned index */
Alter Index YourPartitionedIndex
    On dbo.yourTableName
    Rebuild Partition = All
    With 
    (
      Data_Compression = Page On Partitions(1 to 9)
    , Data_Compression = Row  On Partitions(10 to 11) 
    , Data_Compression = None On Partitions(12)
    );
 
/* Apply compression to your unpartitioned index */
Alter Index YourUnpartitionedIndex
    On dbo.yourTableName
    Rebuild With (Data_Compression = Row);

A couple of things to note. In all of our proof-of-concept testing, we found that compression significantly reduced query execution time, reads (IO), and storage. However, CPU was also increased significantly. The results were more dramatic, both good and bad, with page compression versus row compression. Still, for our older partitions, which aren’t queried regularly, it made sense to turn on page compression. The newer partitions receive row compression, and the newest partitions, which are still queried very regularly by routine processes, were left completely uncompressed. This seems to strike a nice balance in our environment, but of course, results will vary depending on how you use your data.

Something to be aware of is that compressing your clustered index does *not* compress your non-clustered indexes; those are separate operations. Lastly, for those who are curious, it took us about 1 minute to apply row compression and about 7 minutes to apply page compression to partitions averaging 30 million rows.

Looking for more information on table partitioning? Check out my overview of partitioning, my example code, and my article on indexing on partitioned tables.

0saves
If you enjoyed this post, please consider leaving a comment or subscribing to the RSS feed to have future articles delivered to your feed reader.
Tagged , , , , . Bookmark the permalink.

6 Responses to Partitioning Tricks

  1. Pingback: SqlServerKudos

  2. Thank you, this is great – plus the compression addy makes my day :)

  3. Vamsi says:

    On the check constraint error did you make sure your column doesnot allow nulls or if it does change your constraint accordingly. Just a thought.

    Thanks.

  4. Hans Nelsen says:

    Thanks for the great post. We were having the same problem and wound up dropping the constraint and rebuilding it. That solution bugged me. Turns out the problem was upstream in bcp. You need to pass bcp the -h “CHECK CONSTRAINTS” hint in order for it to fire the constraint on entry. BULK INSERT requires a hint as well.

    Obviously, this will slow down the insert process, so testing against your data footprint will determine if the bcp hint should be given or the drop and re-create method is faster.

    Thanks for the article.

  5. Great info – especially the compression details! In your partitioning strategy, how much did your choice of partitioning key(s) impact the performance on those older, compressed partitions when they were queried? Were those sort of queries a factor in which partitioning key(s) you chose and could you share any ‘gotchas’ along those lines? Thanks for the great posts!

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>